Сероводород — живительный газ

Перевод статьи Жуй Вана. Rui Wang — профессор биологии и вице-президент по научной работе Университета Лэйкхед, президент Канадского физиологического общества, ведущий специалист в области метаболизма и физиологических функций низкомолекулярных газов, играющих роль газообразных медиаторов — в том числе моноксида азота, моноксида углерода и сероводорода.

Dr Rui WangУченые показали, что ядовитый в больших количествах газ сероводород (H2S) в малых дозах образуется в организме и выполняет многие важные для нормальной жизнедеятельности функции.

Некоторые из них приведены ниже. Однако H2S может оказывать и патологические эффекты: например, в чрезмерных количествах он снижает выработку инсулина, и есть данные о его противовоспалительном действии.

Представьте, что вы идете по приемному отделению больницы с его сияющими от чистоты, тщательно отмытыми дезинфицирующим раствором стенами — и вдруг до вас доносится характерный зловонный запах тухлых яиц!

Такая ситуация кажется невероятной, однако источник запаха — сероводород (H2S) — может в недалеком будущем стать неотъемлемой принадлежностью любых отделений неотложной помощи.

Сероводородбесцветный газ с сильным запахом, напоминающим запах тухлых яиц. Он хорошо растворяется в воде, создавая т. н. сероводородную воду (слабая анаэробная кислота). Плохо растворим в органических растворителях. Все растворы сероводорода бесцветны.

Этот газ легко обнаружить даже в небольших количествах. Порог обнаружения сероводорода составляет всего от 0,0007 до 0,2 мг/м?

Сероводород горит в присутствии воздуха голубым пламенем , в результате этого процесса выделяется двуокись серы (SO 2 ) или свободная сера (условие — недостаток кислорода при горении или низкая температура).

 

Формула H2S
молярная масса 34,08 г/моль
Плотность 0,001393 г/см?
Растворимость в воде 3,44 л/л (при 0 °C)
2,61 л/л (при 20 °C)
Температура плавления ?85,5 ° С
точка кипения ?59,55 °С
температура самовоспламенения 270°С
Критическая точка 100 °С; 9,00 МПа
Кислотность 7,05 пк а
дипольный момент 0,97833D
Давление газа 1740 кПа (при 21 °С)

Смертельные испарения

О токсичности сероводорода ( H2S) для человека известно на протяжении столетий. В настоящее время этот газ занимает первое место в списке отравляющих веществ при добыче, перекачке и переработке нефти и газа. Мы начинаем ощущать его запах при концентрации в воздухе, равной 0,0047 миллионных долей.

В концентрации 500 миллионных долей сероводород вызывает нарушения дыхания, а концентрация 800 миллионных долей за пять минут приводит к смерти. В то же время, как ни удивительно,  сероводород необходим для жизни.

Для того чтобы понять, как зловонный газ стал важным компонентом физиологических процессов, перенесемся мысленно на 250 млн лет в прошлое.

Тогда, в конце пермского периода, жизнь на Земле держалась на волоске — происходило так называемое великое вымирание, ставшее одной из крупнейших катастроф в истории нашей планеты.

В соответствии с наиболее распространенной гипотезой, его причиной стал выброс  углекислого газа при массовых излияниях вулканических пород в Сибири, запустивший цепную реакцию экологических изменений и приведший к критическому снижению уровня кислорода в воде Мирового океана.

Такие сдвиги в составе океана стали губительными для аэробных (потребляющих кислород) морских видов, но способствовали процветанию анаэробных организмов, в частности зеленых серобактерий.

Бурное размножение таких бактерий сделало океан окончательно непригодным для последних аэробных видов, т.к. серобактерии в больших количествах вырабатывали сероводород. В конечном счете, очевидно, этот ядовитый газ стал выделяться в воздух, уничтожая наземные растения и животных. К концу «великого вымирания» погибли 95% видов морских животных и 70% — наземных.

Возможно, роль сероводорода  в физиологических процессах у человека является наследием тех давних времен. Пережить «великое вымирание» смогли лишь виды, способные выживать в атмосфере сероводорода, а иногда и потреблять его. Видимо, такая способность в какой-то мере сохранилась и у нас.

Первыми симптомами отравления сероводородом являются:

  • раздражение глаз;
  • больное горло;
  • кашель;
  • тошнота;
  • одышка;
  • выделения в легких.

Эти симптомы напоминают отравление цианистым водородом .

Длительное воздействие малых доз сероводорода проявляется, среди прочего:

  • потеря аппетита;
  • общая усталость;
  • головные боли и головокружение;
  • раздражительность;
  • проблемы с памятью.

Наиболее серьезным из последствий является прием внутрь большой дозы сероводорода . К наиболее серьезным симптомам относятся:

  • крах;
  • остановка дыхания;
  • кортикальный псевдоламинарный некроз ;
  • отек мозга;
  • смерть.

Эти симптомы могут проявиться в течение 72 часов после воздействия. Кроме того, сероводород очень токсичен для водных организмов.

Уровень концентрации Симптомы
0,00047 частей на миллион Низкий уровень обнаружения газа
10-20 частей на миллион Раздражение глаз
20 частей на миллион ПДК (в течение 8 часов работы)
50 частей на миллион Максимально допустимая временная концентрация (макс. 10 минут за 8 часов работы)
50-100 частей на миллион Повреждение глаз
100-150 частей на миллион Повреждение обоняния после нескольких вдохов
320-530 частей на миллион Отек легких и риск смерти
530-1000 частей на миллион Остановка дыхания
800 частей на миллион Смертельная концентрация для 50% людей, подвергшихся 5-минутному воздействию
Выше 1000 частей на миллион Мгновенный коллапс и смерть даже после одного вдоха

Доверяясь нюху

Сероводород (H2S )— не единственный токсичный газ, участвующий в физиологических процессах у человека. В 1980-х гг. стали появляться данные о том, что в организме в небольших количествах вырабатывается моноксид азота NO. Вскоре выяснилось, что он играет роль  медиатора — сигнальной молекулы, влияющей на функции клеток.

В работе, удостоенной Нобелевской премии в области физиологии и медицины за 1998 г., было показано, что моноксид азота участвует во многих физиологических процессах, в частности в регуляции иммунных реакций и в передаче сигналов между нейронами, а также вызывает расширение сосудов.

В дальнейшем были обнаружены сходные функции моноксида углерода (СО) — смертельно опасного вещества без цвета и запаха, широко известного под названием угарного газа.
Исследование физиологической роли СО и NO
Исследование физиологической роли СО и NO привело меня к убеждению в том, что в организме могут существовать и другие газообразные медиаторы. В результате постоянных раздумий на эту тему летом 1998 г. меня, наконец, посетила мысль о том, что таким медиатором может быть H2S. Вернувшись как-то с работы, я почувствовал в доме неприятный запах.

Выяснилось, что он исходил из стеклянного шкафа, где хранились наши семейные реликвии, а именно от испортившегося пасхального яйца, которое моя старшая дочка раскрасила в качестве школьного домашнего задания.

В тот момент у меня и возник вопрос: если сероводород образуется в тухлых яйцах, то не может ли он вырабатываться в органах и тканях человека?

Поскольку мои исследования СО и NO касались влияния этих газов на сердечно-сосудистую систему, я решил провести аналогичное изучение эффектов H2S. Выбор оказался удачным.
Сероводород содержится в кровеносных сосудах
В первых же опытах, проведенных нашим коллективом, выяснилось, что сероводород содержится в небольших концентрациях в кровеносных сосудах крысы. Поскольку же физиологические особенности грызунов и человека весьма сходны, можно было с уверенностью предположить, что данный газ образуется и в сосудах человека.

Это открытие вселяло оптимизм, однако для выводов о физиологической роли H2S простой констатации факта присутствия его в сосудистой стенке было явно недостаточно.

На следующем этапе надо было исследовать механизмы образования сероводорода.
Фермент цистатионин-гамма-лиаза
Наше внимание привлек фермент цистатионин-гамма-лиаза, участвующий в образовании H2S у бактерий. В предыдущих работах было показано, что он содержится в печени, где играет роль в образовании некоторых серосодержащих аминокислот («кирпичиков», из которых состоят белки).

В то же время не было никаких данных о присутствии цистатионин-гамма-лиазы в сосудистой стенке. Как и ожидалось, мы получили такие данные. Выяснилось, что в сосудах под действием цистатионин-гамма-лиазы из аминокислоты L-цистеина образуются сероводород, аммиак и пировиноградная кислота.
Какую же роль данный газ играет в сосудах.
Итак, источник Н2S в сосудистой стенке был установлен. Теперь важно было выяснить, какую же роль данный газ играет в сосудах. Зная, что NO вызывает расслабление сосудистых мышц, мы предположили, что и Н2S может действовать так же. Эта гипотеза оказалась верной: при погружении в раствор, содержащий сероводород, сосуды крыс расширялись.

В результате всех проведенных работ складывалось впечатление, что H2S, как и NO, участвует в регуляции артериального давления. В то же время молекулярные механизмы действия H2S оставались нераскрытыми. Первые данные о таких механизмах были получены нами в исследованиях на изолированных клетках сосудов и опубликованы в 2001 г.

Эти данные оказались довольно неожиданными: если NO вызывает расслабление сосудов, активируя фермент гладких мышц гуанилатциклазу, то H2S вызывает тот же эффект совершенно другим путем.

Под действием этого вещества повышается проницаемость так называемых АТФ-зависимых калиевых каналов (КАТР)- белковых комплексов, встроенных в мембрану клеток (в частности, гладких мышц сосудов) и пропускающих ионы калия. В результате выход калия из клетки усиливается, ее заряд меняется, что приводит к снижению проницаемости других — кальциевых — каналов. Как следствие, вход кальция в клетку снижается, а это приводит к расслаблению гладких мышц и расширению сосудов.

Настало время перейти от изолированных клеток к интактным животным. Введение крысам раствора сероводорода приводило в наших опытах к снижению артериального давления — видимо, вследствие расширения артерий и снижения сопротивления кровотоку.

Таким образом, все больше данных говорило о том, что H2S участвует в регуляции артериального давления, вызывая расслабление сосудов. Однако необходимо было еще доказать, что эффекты газа при введении извне и при выработке в сосудистой стенке идентичны.

Для того чтобы исследовать естественные эффекты H2S, мы вывели линию мышей с инактивированным («нокаутированным») геном цистатионин-гамма-лиазы. У таких животных H2S в сосудах, разумеется, не образуется. Далее в течение пяти лет мы изучали мышей совместно с коллективами, возглавляемыми Соломоном Снайдером из Университета Джонса Хопкинса и Линюнь У из Саскачеванского университета (Канада). Наши усилия оказались не напрасными.

В 2008 г. мы опубликовали подробную статью, в которой показали, в частности, что у наших грызунов с возрастом сосуды сужаются, а артериальное давление (измеренное с помощью миниатюрных манжет, надеваемых на хвост), значительно возрастает. При введении таким мышам сероводорода давление снижалось.

Данные нашей работы не оставляли сомнений в том, что H2S играет ключевую роль в регуляции кровообращения. Кроме того, они позволили разрешить одну из многолетних загадок физиологии. Дело в том, что на протяжении долгого времени после удостоенных Нобелевской премии работ по исследованию NO было известно, что действием одного лишь этого вещества невозможно полностью объяснить расширение кровеносных сосудов.

Так, у животных с инактивированными генами, отвечающими за образование NO в клетках эндотелия (внутренней оболочки сосудов), периферические сосуды все же сохраняют способность расслабляться. Однако природа сосудорасширяющего фактора оставалась загадочной.

По нашим данным, этот фактор — H2S. В первых работах мы обнаружили отвечающий за образование сероводорода фермент цистатионин-гамма-лиазу в гладкомышечных клетках, но в дальнейшем он был найден и в эндотелиальных клетках мыши, коровы и человека — причем даже в больших количествах, чем в гладких мышцах. Остается пока неясным, каково соотношение между сосудорасширяющей функцией NO и H2S, хотя некоторые данные позволяют предполагать, что NO вызывает преимущественно расслабление крупных сосудов, a H2S — мелких.
Новое суперлекарство?
Обнаружение синтеза сероводорода в сосудах и его роли в регуляции артериального давления привлекло внимание многих исследователей, ищущих новые способы защиты сердца от ишемического повреждения (т.е. повреждения, обусловленного снижением кровоснабжения, следовательно, доставки кислорода).

Типичный пример такого повреждения — инфаркт миокарда, когда питающий сердце сосуд закупоривается тромбом, и наступает гибель снабжаемого этим сосудом участка сердца. В 2006 г. Гэри Бакстер, в настоящее время работающий в Кардиффском университете (Уэльс), с соавторами опубликовали статью, в которой были впервые представлены данные о благотворной роли H2S при ишемическом повреждении сердца.

В работе использовали изолированные сердца крыс, снабжаемые не кровью, а солевым раствором, насыщенным кислородом. Моделью ишемического повреждения служило прекращение притока такого раствора по одной из коронарных артерий (сосудов, снабжающих сердце). Оказалось, что добавление в раствор H2S за несколько минут до перекрывания артерии уменьшало размер поврежденного участка.

Через год Дэвид Лифер из Университета Эмори показал, что генетически модифицированные мыши с повышенной выработкой сероводорода в сердце лучше переносят ишемию миокарда, вызванную перекрыванием коронарной артерии, и более устойчивы к повреждениям, часто возникающим после восстановления кровотока (так называемым реперфузионным повреждениям).

Эти и другие данные позволяют предположить, что H2S можно использовать для предупреждения и лечения артериальной гипертонии, инфаркта миокарда и инсульта. Кроме того, сосудорасширяющее действие сероводорода может найти применение и при других состояниях, связанных с расстройствами функции сосудов, например при нарушениях эрекции (эректильной дисфункции). Известно, что в основе эрекции лежит расширение сосудов полового члена и увеличение притока к нему крови.

Эффект «Виагры» обусловлен именно тем, что она увеличивает продолжительность расширяющего действия NO на сосуды. Есть данные о том, что сходный эффект может оказывать и H2S, хотя роль этого вещества в мужской половой системе человека еще предстоит изучить (известно, например, что в тканях полового члена вырабатывается СО, однако данный газ способствует не эрекции, а эякуляции).

Сероводород вырабатывается не только в сердце и сосудах. Он образуется и в нервной системе, только под действием не цистатионин-гамма-лиазы, а другого фермента — цистатионин-бета-синтазы. Функция H2S в нервной системе неясна. По некоторым данным, он может играть роль нейромодулятора — вещества, повышающего или снижающего возбудимость нейронных контуров. Возможно, H2S участвует в долговременной потенциации — процессе, облегчающем взаимодействие между нейронами и играющем роль в обучении и памяти.

Показано, что под действием сероводорода в нервных клетках повышается уровень антиоксиданта глутатиона, предохраняющего клетки от действия повреждающих факторов. Наконец, H2S может играть роль в болевом восприятии, обеспечивающем реакции на опасные воздействия.

Кроме того, сероводород может влиять на метаболизм, т.е. биохимические процессы, обеспечивающие выработку и использование энергии, и синтез веществ. В удивительных опытах Марка Рота и его коллег из Вашингтонского университета было показано, что ингаляционное введение мышам небольших доз Н2S приводит к замедлению метаболизма и, тем самым, к прогрессированию некоторых заболеваний.

Частота сердечных сокращений у таких мышей сразу после начала вдыхания H2S падала вдвое, и они переходили в состояние анабиоза: обменные процессы настолько снижались, что для существования животным было достаточно вдыхания кислорода и H2S без каких-либо отрицательных последствий.

Создавалось впечатление, что во время такого сероводородного анабиоза метаболизм поддерживается на минимальном для жизненно важных органов уровне до тех пор, пока не восстановится нормальное энергообеспечение.

Через 30 минут после прекращения ингаляции H2S уровень метаболизма восстанавливался.

Если бы сероводородный анабиоз оказался эффективным и безопасным у человека, то он мог бы стать мощнейшим методом экстренной помощи. Назначение ингаляций H2S пострадавшим при автомобильных авариях или больным с инфарктом миокарда могло бы дать выигрыш времени, необходимый для транспортировки в больницу и оказания специализированной помощи.

С помощью сероводорода можно было бы поддерживать в состоянии анабиоза нуждающихся в трансплантации до получения донорского органа — более того, можно было бы продлить жизнеспособность самих донорских органов.

Можно представить себе применение Н2S и в очагах военных конфликтов или природных катаклизмов: ингаляции этого газа могли бы отсрочить экстренность переливаний крови до доставки достаточных количеств последней. Вдыхание сероводорода существенно повышает выживаемость крыс при потере 60% крови: получавшие H2S крысы выживали в 75% случаев, а контрольные — лишь в 25%.
Сдержанный оптимизм
Не следует считать, однако, что сероводород — это идеальное средство от всех болезней. До сих пор идут споры, например, о том, облегчает он или усугубляет течение воспаления. В нашей и других лабораториях было показано, что Н2S играет важную роль в развитии сахарного диабета I — формы этого заболевания, часто возникающей в детстве и приводящей к пожизненной зависимости от инъекций инсулина.

 

Выяснилось, что H2S образуется в так называемых бета-клетках поджелудочной железы, секретирующих инсулин, и у животных с сахарным диабетом I выработка сероводорода в таких клетках резко повышена. Это приводит, во-первых, к гибели большого числа бета-клеток, во-вторых, к подавлению высвобождения инсулина оставшимися бета-клетками. В результате секреция инсулина падает до уровня, недостаточного для нормального распада глюкозы. Таким образом, H2S может быть одним из виновников сниженного уровня инсулина в крови при сахарном диабете I.

Некоторые из благотворных эффектов H2S у крыс и мышей не воспроизводятся у более крупных животных. Так, в 2007 г. Французскими исследователями было показано, что при ингаляциях H2S овцы, в отличие от грызунов, не впадают в состояние анабиоза.

В другой работе вдыхание H2S у поросят приводило не к снижению, а к повышению скорости обменных процессов.
Даже если можно вызвать сероводородный анабиоз у человека, неизвестно, не приведет ли он к нарушениям деятельности мозга. Правда, у лабораторных животных подобных нарушений не выявлено, но переносить такие данные на психические функции человека сложно. Пока неясно, могут ли сохраняться такие высшие функции, как память и мышление, в условиях сероводородного анабиоза, когда жизнь чуть теплится.

И все же большие терапевтические возможности сероводорода вызывают повышенный интерес фармакологов. Несколько фирм уже разрабатывают препараты, выделяющие в организме этот газ. Так, итальянской фирмой CTG Pharma созданы лекарства, сочетающие свойства нестероидных противовоспалительных средств (НПВС) и носителей H2S .

 

В опытах на животных показано, что такие препараты могут быть эффективными при лечении воспалительных заболеваний нервной системы и желудочно-кишечного тракта, нарушений эрекции, ишемической болезни сердца и заболеваний кровеносных сосудов. А фирмой Ikaria (Нью-Джерси), один из учредителей которой — Марк Рот, недавно начата II фаза клинических испытаний (исследования клинической эффективности) инъекционной формы Н2S (точнее, Na2S) у больных с ишемической болезнью сердца либо готовящихся к операциям на сердце или легких.

Работы прошедшего десятилетия показали, что сероводород, чей запах вызывает у нас естественное отвращение, чрезвычайно важен для нормальной работы сердца, а может быть, также мозга и других органов. Не исключено, что он обладает и другими, не известными пока эффектами. Все это открывает новые горизонты в понимании молекулярных основ физиологии и здоровья человека. Изучение эффектов Н2S еще только начинается, но уже есть все основания полагать, что когда-нибудь оно позволит предложить новые способы борьбы с неизлечимыми сегодня заболеваниями.

Последнее изменение: 2023,24, Август в 19:07

Дорогие друзья. Данный материал не является медицинским советом, за диагнозом и способом лечения, обратитесь к специалисту для консультации.

кнопка вверх